Zur Seitennavigation oder mit Tastenkombination für den accesskey-Taste und Taste 1 
Zum Seiteninhalt oder mit Tastenkombination für den accesskey und Taste 2 
BUW Logo BUW Logo
Startseite    Anmelden    Semester für archivierte Vorlesungsverzeichnisse:  SoSe 2020   (Für die Prüfungsanmeldung und das Semesterticket muss das Semester nicht umgestellt werden.)

Key Competences in Computer Science - Einzelansicht

  • Funktionen:
Veranstaltungsart Vorlesung/Übung Veranstaltungsnummer 201ELE204903
Semester SoSe 2020 SWS 4
Erwartete Teilnehmer/-innen Max. Teilnehmer/-innen
Belegung Diese Veranstaltung ist nicht belegpflichtig!
Sprache englisch
Hyperlink https://dke.uni-wuppertal.de/de/teaching/
Weitere Links Moodle Course
Termine Gruppe: iCalendar Export für Outlook
  Tag Zeit Rhythmus Dauer Raum Lehrperson fällt aus am Max. Teilnehmer/-innen

Einzeltermine ausblenden
iCalendar Export für Outlook
Do. 12:15 bis 13:45 woch 23.04.2020 bis 16.07.2020  FC Campus Freudenberg - FC.00.10     30
  • 23.04.2020
  • 30.04.2020
  • 07.05.2020
  • 14.05.2020
  • 28.05.2020
  • 11.06.2020
  • 18.06.2020
  • 25.06.2020
  • 02.07.2020
  • 09.07.2020
  • 16.07.2020
Einzeltermine anzeigen
iCalendar Export für Outlook
Do. 14:15 bis 15:45 woch 30.04.2020 bis 16.07.2020  FC Campus Freudenberg - FC.00.10     30
Gruppe :

Zugeordnete Person
Zugeordnete Person Zuständigkeit
Gipp, Bela, Univ.- Prof. Dr. verantwortlich
Abschluss Studiengang Prüfungsversion Semester
Bachelor an Universitäten Informatik 20181 -
Zuordnung zu Einrichtungen

Parts or all of the course will be given as video conferences.

To receive the organizational details, please register for the course in Moodle by April 22!


Lecture: Thursday 12:15-13:45

Exercise: Thursday 14:15-15:45 



Course participants will gain an overview of the state-of-the-art technologies and tools in computer science. They will become familiar with scripting (Python, Shell), Web technologies (HTML, JavaScript) and essential tools for computer scientists (IDEs, code frameworks, LaTeX, reference managers, etc.). Through practical work on projects, students will get deeper into selected topics and technologies and acquire practical skills necessary to solve various real-world problems in computer science.

Through lectures, exercises and individual work, students will train their ability to:

  • analyze a given problem from a computing point of view;
  • research programmatical methods to solve the problem;
  • implement a solution for the problem using suitable tools;
  • structure, write, and format a documentation for the software developed;
  • present their work using appropriate presentation techniques and presentation aids;
  • answer questions and discuss their work with peers.

By successfully completing the course, participants will acquire the knowledge and the skills required to successfully complete various forms of computer-science-related projects.



Contents of the lectures and exercises:

Command-line & Scripting

  • Shell, SSH, SFTP
  • grep, sed, regular expressions, 
  • Shell scripting

Python Programming

  • Python basics
  • Unit Testing
  • Logging
  • Parallelization
  • Database interaction

Web Technologies

  • Python Django
  • HTML
  • JavaScript

Infrastructure & Support Tools

  • Version control using git
  • Automated unit testing using Travis
  • LaTeX + OverLeaf
  • Reference management tools



The course employs the following teaching methods:

  • Interactive lectures to acquire theoretical knowledge and obtain an overview of the available technologies and tools
  • Hands-on exercises, in which students solve applied problems to learn essential skills
  • Individual projects, in which students solve complex real-world problems to train the skills acquired



Topics for practical projects will include, but will not be limited to:

  • Information retrieval from WikiData
  • Natural language processing applications
  • Web-based front-end development
  • Implementation of similarity measures for sets, sequences, and vectors

To successfully complete the course, students will be required to:

  • Complete an applied individual project (40% of final grade)
  • Submit appropriate documentation of the project  (20% of final grade)
  • Present the project at the end of the course and show the ability to answer questions from the audience  (10% of final grade)
  • Pass a written test  (30% of final grade)

Completion of all the deliverables is mandatory. Each of them will be evaluated separately, the overall grade will be calculated based on the weights of particular deliverables.

Die Veranstaltung wurde 2 mal im Vorlesungsverzeichnis SoSe 2020 gefunden:

2007 WUSEL-Team Bergische Universität Wuppertal
Anzahl aktueller Nutzer/-innen auf : 987